Integrating LLM APIs for AI-Powered Features
Large Language Models have opened up exciting possibilities for enhancing applications with intelligent features.
Use Cases
At Castkro, we integrated LLM APIs for:
- Talent suggestion algorithms
- Application writing assistance
- Content analysis and recommendations
Implementation
# Django example with OpenAI
import openai
def generate_suggestions(profile_data):
response = openai.ChatCompletion.create(
model='gpt-4',
messages=[{'role': 'user', 'content': f'Generate suggestions for: {profile_data}'}]
)
return response.choices[0].message.content
Best Practices
- Cache responses when appropriate
- Implement rate limiting
- Add fallback mechanisms
- Monitor API costs closely
- Handle errors gracefully