tutorial #AI #OpenAI #Claude

Integrating LLM APIs for AI-Powered Features

A practical guide to integrating OpenAI, Claude, and other LLM APIs into your applications for intelligent features.

Lakhveer Bawa
Lakhveer Bawa
Full Stack Software Engineer
tutorial

Integrating LLM APIs for AI-Powered Features

Large Language Models have opened up exciting possibilities for enhancing applications with intelligent features.

Use Cases

At Castkro, we integrated LLM APIs for:

  • Talent suggestion algorithms
  • Application writing assistance
  • Content analysis and recommendations

Implementation

# Django example with OpenAI
import openai

def generate_suggestions(profile_data):
    response = openai.ChatCompletion.create(
        model='gpt-4',
        messages=[{'role': 'user', 'content': f'Generate suggestions for: {profile_data}'}]
    )
    return response.choices[0].message.content

Best Practices

  • Cache responses when appropriate
  • Implement rate limiting
  • Add fallback mechanisms
  • Monitor API costs closely
  • Handle errors gracefully